55 research outputs found

    SDN and NFV for satellite infrastructures

    Get PDF
    The integration of SDN and NFV enablers into the satellite network could prove to be an essential means to save on physical sites, improve the time to bring new services to the market and open new ways to improve network resiliency, availability and efficiency. It can be considered that the above two enablers can play a central role in the integration of satellite to terrestrial technologies by using federated management of the network resources.Peer ReviewedPostprint (author's final draft

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft

    On the virtualization and dynamic orchestration of satellite communication services

    Get PDF
    Key features of satellite communications such as wide-scale coverage, broadcast/multicast support and high availability, together with significant amounts of new satellite capacity coming online, anticipate new opportunities for satellite communications services as an integral part within upcoming 5G systems. To materialize these opportunities, satellite communications services have to be provisioned and operated in a more flexible, agile and cost-effective manner than done today. In this context, this paper describes a solution for the virtualization and dynamic orchestration of satellite communication services that builds on the introduction of Software Defined Networking (SDN) and Network Function Virtualization (NFV) technologies within the satellite ground segment systems. Along with the description of the main system architecture traits, the flowchart of a general procedure for the dynamic instantiation of virtualized satellite networks on top of a SDN/NFV-enabled satellite ground segment system is provided. The paper also presents experimental results for the dynamic customization of satellite network services through the implementation of a set of virtualized satellite network functions that can be orchestrated over general purpose open virtual platforms.Peer ReviewedPostprint (author's final draft

    Enhancing satellite & terrestrial networks integration through NFV/SDN technologies

    Get PDF
    NFV and SDN technologies can become key facilitators for the combination of terrestrial and satellite networks. Enabling NFV into the SatCom domain will provide operators with appropriate tools and interfaces in order to establish end-to-end fully operable virtualized satellite networks to be offered to third-party operators/service providers. Enabling SDNbased, federated resource management paves way for a unified control plane that would allow operators to efficiently manage and optimize the operation of the hybrid network. The proposed solution is expected to bring improved coverage, optimized communication resources use and better network resilience, along with improved innovation capacity and business agility for deploying communications services over combined networks.Postprint (author's final draft

    AI-enabled slice protection exploiting moving target defense in 6G networks

    Get PDF
    As commercial 5G roll-outs continue progressing, research efforts are shifting toward requirements, challenges, and critical enablers for prospective 6G networks. The introduction of Artificial Intelligence (AI) support in 5G will be further exploited, rendering AI a key enabler for providing automated network management and orchestration, while improving the network resilience against potential threat actors. Therefore, it is crucial to investigate smart security schemes in “Beyond 5G” networks. This paper presents a use case for the proactive and reactive defense of end-to-end network slices that relies on AI-based attack detection to apply Moving Target Defense (MTD) policies based on an innovative framework

    Smart Television Services Using NFV/SDN Network Management

    Get PDF
    International audienceIntegrating joint network function virtualization (NFV) and software-defined networks (SDNs) with digital televisions (TVs) into home environments, has the potential to provide smart TV services to users, and improve their quality of experience (QoE). In this regard, this paper focuses on one of the next generation services so-called follow me service (FMS). FMS is a service offered by 5gNB to user equipments (UEs) in indoor environments (e.g., home), it enables its clients to use their smart phones to select media content from content servers, then cast it on the nearest TV set (e.g., living room) and continue watching on the next TV set (e.g., kitchen) while moving around the indoor coverage area. FMS can be provisioned by utilizing UEs geoloca-tion information and robust mechanisms for switching between multiple 5G radio access technologies (RATs), based on the intelligence of the SDN/NFV intelligent home IP gateway of the Internet of Radio Light (IoRL) project paradigm. In view that the actual IoRL system is at its early development stage, we step forward by using Mininet platform to integrate SDN/NFV virtualization into 5G multi-RAT scenario and provide performance monitoring with measurements for the identified service. Simulation results show the effectiveness of our proposal under various use case scenarios by means of minimizing the packet loss rate and improving QoE of the home users. Index Terms-Software defined networks, network function virtualisation, quality of experience, Internet of radio light, intelligent home IP gateway

    A cloud-enabled small cell architecture in 5G networks for broadcast/multicast services

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The evolution of 5G suggests that communication networks become sufficiently flexible to handle a wide variety of network services from various domains. The virtualization of small cells as envisaged by 5G, allows enhanced mobile edge computing capabilities, thus enabling network service deployment and management near the end user. This paper presents a cloud-enabled small cell architecture for 5G networks developed within the 5G-ESSENCE project. This paper also presents the conformity of the proposed architecture to the evolving 5G radio resource management architecture. Furthermore, it examines the inclusion of an edge enabler to support a variety of virtual network functions in 5G networks. Next, the improvement of specific key performance indicators in a public safety use case is evaluated. Finally, the performance of a 5G enabled evolved multimedia broadcast multicast services service is evaluated.Peer ReviewedPostprint (author's final draft

    Deliverable D2.1 - Ecosystem analysis and 6G-SANDBOX facility design

    Get PDF
    This document provides a comprehensive overview of the core aspects of the 6G-SANDBOX project. It outlines the project's vision, objectives, and the Key Performance Indicators (KPIs) and Key Value Indicators (KVIs) targeted for achievement. The functional and non-functional requirements of the 6G-SANDBOX Facility are extensively presented, based on a proposed reference blueprint. A detailed description of the updated reference architecture of the facility is provided, considering the requirements outlined. The document explores the experimentation framework, including the lifecycle of experiments and the methodology for validating KPIs and KVIs. It presents the key technologies and use case enablers towards 6G that will be offered within the trial networks. Each of the platforms constituting the 6G-SANDBOX Facility is described, along with the necessary enhancements to align them with the project's vision in terms of hardware, software updates, and functional improvements

    The 6G Architecture Landscape:European Perspective

    Get PDF
    • …
    corecore